JUMO Instrument Co. Ltd.

Temple Bank, Riverway Harlow, Essex CM 20 2TT, UK Phone: +44 1279635533
Fax: $\quad+441279635262$
e-mail: sales@jumo.co.uk
Internet: www.jumo.co.uk

JUMO Process Control, Inc.
8 Technology Boulevard
Canastota, NY 13032, USA
Phone: 315-697-JUMO 1-800-554-JUMO
Fax: 315-697-5867
e-mail: info@jumo.us
Internet: www.jumo.us

JUMO IPC
 IGBT Power Converter with amplitude control

Brief description

The JUMO IPC is a power converter for controlling heater loads that previously required a transformer (either a variable transformer or a combination of transformer and thyristor power converter).
Its function is that of an electronic transformer with a pulsed DC output.
It combines the advantages of a conventional variable transformer, such as amplitude control which is the sinusoidal current loading, with the advantages of a thyristor power switch, such as current limiting, load monitoring, subordinate control action, etc. There is no electrical isolation between the supply voltage and the load voltage.
This power converter is employed wherever substantial resistive loads need to be switched.
To operate the IPC, a choke and a line filter are indispensable in addition to the IPC power converter itself. Only the chokes or line filters specified by JUMO may be used for this purpose. Thanks to the amplitude control (the current drawn from the supply is always sinusoidal), synchronous clock controls (as for burst-firing operation) and power-factor compensation networks (for the reactive power resulting from phase-control) are no longer required.

Block diagram

Type 709050/X3 ...

Special features

- Protective operation when power supply operated under high resistive loads (flicker)
- Operation of low voltage heaters directly at the power supply without impedance-matching transformer

■ Minimum harmonics in the instrument power supply and low weight (power transformer n/a)

- Short-circuit control when switching on
- Line current in proportion to the required power (amplitude control)
- Control independent of the heaters' resistive characteristics
- Minimum reactive power
- Compact dimensions
- The subordinate control action $\mathrm{U}^{2}, \mathrm{P}, \mathrm{I}^{2}$ can be freely chosen
- Ageing process compensation for SIC heating elements
- Indicator showing when ageing can no longer be compensated by the voltage reserve ${ }^{1}$
- Resistance limitation, protection of Molybdenum Disilicide heating elements against overheating in the upper temperature range ${ }^{1}$
- Integrated semiconductor fuses to protect the IPC in the event of an earth short ${ }^{1}$

1. Only for types 709050/X2 and ... /X3

Technical data

Control

Control signal	$0(4) \ldots 20 \mathrm{~mA}$	$\mathrm{R}_{\mathrm{i}}=50 \Omega$
	$0(2) \ldots 10 \mathrm{~V}$	$\mathrm{R}_{\mathrm{i}}=25 \mathrm{k} \Omega$
	$0(1) \ldots 5 \mathrm{~V}$	$\mathrm{R}_{\mathrm{i}}=12 \mathrm{k} \Omega \quad$ Manual control through an external $5 \mathrm{k} \Omega$ potentiometer
Input signal attenuation		Adjustment range $100 \ldots 20 \%$
Base load setting		$0 \ldots 100 \%$

Voltage supply

	Type 709050／X1．．．	Type 709050／X2．．．	Type 709050／X3．．．
Voltage supply Control section	$115 \mathrm{~V} \mathrm{AC}+15 \% /-20 \%, 48 \ldots 63 \mathrm{~Hz}$ ，（only with 115 V AC in the power section） 230 V AC $+15 \% /-20 \%, 48 \ldots 63 \mathrm{~Hz}$		
Voltage supply Power section	$\begin{gathered} 115 \mathrm{~V} \text { AC }+15 \% /-20 \%, 48 \ldots 63 \mathrm{~Hz}, 230 \mathrm{~V} \text { AC }+15 \% /-20 \%, 48 \ldots 63 \mathrm{~Hz} \\ 400 \mathrm{~V} \text { AC }+15 \% /-20 \%, 48 \ldots 63 \mathrm{~Hz} \end{gathered}$		
Load voltage $\mathrm{U}_{\mathrm{L} \text { rms }}$	20V DC，60V，90V，120V 工	$\begin{gathered} 20 \mathrm{~V} \text { DC, } 60 \mathrm{~V}, 90 \mathrm{~V}, 120 \mathrm{~V}, 150 \mathrm{~V}, 210 \mathrm{~V}, \\ 270 \mathrm{~V}, 380 \mathrm{~V} \simeq \end{gathered}$	$\begin{gathered} 20 \mathrm{~V} \text { DC, } 60 \mathrm{~V}, 90 \mathrm{~V}, 120 \mathrm{~V}, 150 \mathrm{~V}, \\ 210 \mathrm{~V} \simeq \end{gathered}$
	Further voltages upon request		
Load current $\mathrm{U}_{\text {L rms }}$	DC 70A 工	DC 70A／100A 工	DC 200A 亿
Load type		Resistive loads	

General characteristics

Circuit variants	Single－phase operation		
Operating modes	Amplitude control		
Subordinate control loop	As standard：free choice between $\mathrm{U}^{2}-, \mathrm{P}-, \mathrm{I}^{2}$ control via internal switches		
Current limiting	In operation，the load current can be set in the range of $10 \ldots 100 \% I_{N}$ by a trimmer on the front panel． This limits the rms－value of the load current．		
Partial load failure	$20 . .100 \%$ of nominal current		
R－control	－	Adjustment range from $R_{\text {Nom }}$ to $10 x R_{\text {Nom }}$ $\mathrm{R}_{\text {Nom }}=$ nominal voltage／nominal current	
SIC reserve		Message indicated when the voltag	reserve for SIC heating rods is exhaust－ ed
Actual value output	As standard：free choice between $\mathrm{U}^{2}-, \mathrm{P}-$ ，or I^{2} signal via internal switches， adjustable $0 \ldots 5 \mathrm{~V}$ to $0 \ldots 10 \mathrm{~V}, \mathrm{I}_{\max } \cup 2 \mathrm{~mA}$ ，offset deviation $\leq \pm 5 \%$		
Control accuracy	The regulation will eliminate supply voltage variations within the tolerance range（＋15\％／－20\％）with an accuracy of $\pm 0.5 \%$		
Electrical connection	Control leads via plug－in screw terminals for conductor cross sections $0.5 \ldots 2.5 \mathrm{~mm}^{2}$		
	in the power section via cable lugs as per DIN 46212	in the power section via $10 \mathrm{~mm}^{2}$ ．．． $50 \mathrm{~mm}^{2}$ screw terminals	Power section via $10 \mathrm{~mm}^{2}$ ．．． $95 \mathrm{~mm}^{2}$ screw terminals
Semiconductor fuse	The $\mathrm{I}^{2} \mathrm{t}$ value of an external fuse must be smaller than $2000 A^{2}$ s！	The $I^{2} t$ value of the integrated sem 200	conductor fuse must be smaller than $0 A^{2} s$ ！
Degree of protection	IP 00 as per EN 60529	IP 10 as p	er EN 60529
Protection class	Protection class I，with isolated control circuitry for connection to SELV circuits		
Permissible ambient temperature range	$5 \ldots 40^{\circ} \mathrm{C}$（3K3 as per EN 60 721－3－3）		
Permissible storage temperature range	$-10 \ldots+70^{\circ} \mathrm{C}(1 \mathrm{~K} 3$ as per EN $60721-3-1)$		
Cooling	forced convection，maximum inlet air temperature $35^{\circ} \mathrm{C}$		
Climatic conditions	Rel．humidity $\leq 5 \ldots 85$ \％annual average，no condensation 3K3 as per EN 60721		
mounting position	vertical		
Operating conditions	The converter is designed as a built－in device as per EN 50 178，pollution degree 2， overvoltage category Ü III		
Electromagnetic compatibility	as per DIN 61326 emitted interference：Class A－Only for industrial use－ interference immunity：to industrial requirements		
Test voltage	as per EN 50178		
Creepage distances	Control section to load circuit $\div 5.5 \mathrm{~mm}$ ，control section to housing $\div 5.5 \mathrm{~mm}$ ，device can be connected to SELV circuits．SELV＝Separate Extra Low Voltage（safe low voltage）		
Ground leakage current	The Ground leakage current of the IPC power converter used with an EMC filter in the supply cable is less than 3 mA （excluding any leakage current in the load）．		
Housing	Metal housing		
Power consumption of the control section	approx．50VA	max	100 VA
Standard accessories	1 operating manual B 70．9050．0．．．		

Power loss (W)

Note:

Power loss occurs in the form of thermal discharge at the cooling body of the power converter, at the EMC filter and choke. It has to be be discharged from the point of installation (e.g. in the switch cabinet) according to the climatic conditions!

Type 709050/X1...and type 709050/X2...

Type 709050/82-12-400-150-100/252

Nominal data of the device: Load voltage = 150V; load current $=100 \mathrm{~A}$ Voltage supply to the power section $=400 \mathrm{~V}$

Resistive loads and Molybdenum Disilicide heating elements: Heating element data: Load voltage = 140V; load current $=90 \mathrm{~A}$

Determine the max. load voltage actually taken (e.g. 140 V) and find the point intersecting with the curve for the voltage supply in the power section. The Y axis shows the attendant power dissipation factor of, e.g., 8.5.

The power dissipation (W) is obtained by multiplying this power dissipation factor by the load current (e.g. 90A) that flows at max. load voltage (e.g. 140V) through the load resistor

Power loss $=90(\mathrm{~A}) \times$ power dissipation factor
Power loss $=90(A) \times 8.5=765 W$

Type 709050/92-12-400-150-100/252

Nominal data of the device: Load voltage $=150 \mathrm{~V}$; load current $=100 \mathrm{~A}$ Voltage supply to the power section $=400 \mathrm{~V}$; P control, $\mathrm{P}=6300 \mathrm{~W}$

SIC heating elements

SIC heating element data: new: $70 \mathrm{~V} / 90 \mathrm{~A}$, old $140 \mathrm{~V} / 45 \mathrm{~A} ; \mathrm{P}=6300 \mathrm{~W}$
Determine the maximum load voltage actually taken (e.g. 70V) of the new SIC heating element and find the point intersecting with the curve for the voltage supply in the power section. The Y axis shows the attendant power dissipation factor of, e.g., 6.8.

The power dissipation (W) is obtained by multiplying this power dissipation factor by the load current (e.g. 90A)
that flows at max. load voltage (e.g. 70V) through the new SIC heating element

Power loss $=90(\mathrm{~A}) \times$ power dissipation factor

Power loss $=90(A) \times 6.8=\mathbf{6 1 2 W}$

Type 709050/83-12-400-90-200/252
Nominal data of the device: Load voltage $=90 \mathrm{~V}$; load current $=200 \mathrm{~A}$ Voltage supply to the power section $=400 \mathrm{~V}$

Resistive loads and Molybdenum Disilicide heating elements:
Heating element data: Load voltage $=75 \mathrm{~V}$; load current $=130 \mathrm{~A}$
Determine the max. load voltage actually taken (e.g. 75 V) and find the point intersecting with the curve for the voltage supply in the power section. The Y axis shows the attendant power dissipation factor of, e.g., 7.5.

The power dissipation (W) is obtained by multiplying this power dissipation factor by the load current (e.g. 130A) that flows through the load resistor at max. load voltage (e.g. 75V)

Power loss $=130(\mathrm{~A}) \times$ power loss factor
Power loss $=130(A) \times 7.5=975 W$

Type 709050/93-12-400-90-200/252

Nominal data of the device: Load voltage $=90 \mathrm{~V}$; load current $=200 \mathrm{~A}$; voltage supply to the power section $=400 \mathrm{~V}$; P control, $\mathrm{P}=9000 \mathrm{~W}$

SIC heating elements
SIC heating element data: new: $45 \mathrm{~V} / 200 \mathrm{~A}$, old $90 \mathrm{~V} / 100 \mathrm{~A} ; \mathrm{P}=9000 \mathrm{~W}$
Determine the maximum load voltage actually taken (e.g. 45V) of the new SIC heating element and find the point intersecting with the curve for the voltage supply in the power section. The Y axis shows the attendant power dissipation factor of, e.g., 6.8.

The power dissipation (W) is obtained by multiplying this power dissipation factor by the load current (e.g. 200A) that flows at max. load voltage (e.g. 45V) through the new SIC heating element

Power loss $=200(A) \times$ power loss factor
Power loss $=200(A) \times 6.8=1360 W$

General characteristics

Fault signal output	Type 709050/X1...	Type 709050/X2...	Type 709050/X3...
Relay (changeover contact) without contact suppression	150000 switching actions at switched power level of $3 \mathrm{~A} / 230 \mathrm{~V} 50 \mathrm{~Hz}$ resistive load		
Optocoupler output	$\mathrm{I}_{\mathrm{Cmax}}=2 \mathrm{~mA}, \mathrm{U}_{\text {CEOmax }}=32 \mathrm{~V}$		
Dimensions of the power converter			
(length x width x height)	$(272 \times 260 \times 175) \mathrm{mm}$	$(348.6 \times 300 \times 217) \mathrm{mm}$	$(403.5 \times 300 \times 257.5) \mathrm{mm}$
Weight	approx. 9 kgs	approx. 17 kgs	approx. 22.5 kgs

Chokes

Type	Dimensions	Abutting cross section	Connection, tightening torque	Weight	Sales number
$\mathrm{L}=0.6 \mathrm{mH} / \mathrm{I}_{\mathrm{N}}=75 \mathrm{~A}$ protection IP 10 as per EN 60529	Choke diameter: 155 mm Height: 135 mm Diameter of fixing hole: 10.4 mm	$4 \ldots 25 \mathrm{~mm}^{2}$	Via screw terminals, max. $4 \ldots 4.5 \mathrm{Nm}$	approx. 7.5 kgs	$70 / 00392474$
$\mathrm{L}=0.6 \mathrm{mH} / \mathrm{I}_{\mathrm{N}}=100 \mathrm{~A}$ protection IP 10 as per EN 60529	Height: 208 mm Width: $200 \times 200 \mathrm{~mm}$	$10 \ldots 50 \mathrm{~mm}^{2}$	Via screw terminals, max. $6 \ldots 8 \mathrm{Nm}$	approx. 20 kgs	$70 / 00415759$
$\mathrm{L}=0.6 \mathrm{mH} / \mathrm{I}_{\mathrm{N}}=200 \mathrm{~A}$ protection IP 10 as per EN 60529	Height: 190 mm Width: $200 \times 385 \mathrm{~mm}$	$35 \ldots 95 \mathrm{~mm}^{2}$	Via screw terminals, max. $15 \ldots 20 \mathrm{Nm}$	approx. 37 kgs	$70 / 00436848$

EMC filter

For voltage supply	wer section					
Nominal voltage, Nominal current	Dimensions (length x width x height)	Abutting cross section	tightening torque	Weight	Permissible ambient temperature	Sales No.
$\begin{aligned} & 115 \mathrm{~V} / 250 \mathrm{~V} / 440 \mathrm{~V} \text { AC, } \\ & \mathrm{I}_{\mathrm{Nom}}=16 \mathrm{~A} \\ & \hline \end{aligned}$	$(255 \times 60 \times 125) \mathrm{mm}$	0.25... $4 \mathrm{~mm}^{2}$	0,6 .. 0.8 Nm	approx. 4 kgs	$40^{\circ} \mathrm{C}$	70/00399527
$\begin{aligned} & 115 \mathrm{~V} / 250 \mathrm{~V} / 440 \mathrm{~V} \mathrm{AC}, \\ & \mathrm{I}_{\text {Nom }}=20 \mathrm{~A} \end{aligned}$	$(289 \times 70 \times 140) \mathrm{mm}$	$0.5 \ldots 10 \mathrm{~mm}^{2}$	1,5 ... 1.8 Nm	approx. 5.5 kgs	$40^{\circ} \mathrm{C}$	70/00438775
$\begin{aligned} & 115 \mathrm{~V} / 250 \mathrm{~V} / 440 \mathrm{~V} \text { AC, } \\ & \mathrm{I}_{\text {Nom }}=32 \mathrm{~A} \end{aligned}$	$(324 \times 90 \times 160) \mathrm{mm}$	0.5... $10 \mathrm{~mm}^{2}$	1,5 .. 1.8 Nm	approx. 9.5 kgs	$40^{\circ} \mathrm{C}$	70/00409831
$\begin{aligned} & 115 \mathrm{~V} / 250 \mathrm{~V} / 440 \mathrm{~V} \mathrm{AC}, \\ & \mathrm{I}_{\text {Nom }}=63 \mathrm{~A} \end{aligned}$	$(380 \times 117 \times 190) \mathrm{mm}$	$0.5 \ldots 16 \mathrm{~mm}^{2}$	$2 . . .2 .3 \mathrm{Nm}$	approx. 17 kgs	$40^{\circ} \mathrm{C}$	70/00409990
$\begin{aligned} & 115 \mathrm{~V} / 250 \mathrm{~V} / 440 \mathrm{~V} \mathrm{AC}, \\ & \mathrm{l}_{\text {Nom }}=100 \mathrm{~A} \end{aligned}$	$(445 \times 150 \times 220) \mathrm{mm}$	$10 . . .50 \mathrm{~mm}^{2}$	$6 \ldots 8 \mathrm{Nm}$	approx. 26 kgs	$40^{\circ} \mathrm{C}$	70/00431997
For voltage supply to the control section						
$\begin{aligned} & 115 \mathrm{~V} / 250 \mathrm{~V} \text { AC, } \\ & \mathrm{I}_{\mathrm{Nom}}=1 \mathrm{~A} \end{aligned}$	$(80 \times 45 \times 30) \mathrm{mm}$	via spade connector $6,3 \times 0,8 \mathrm{~mm}$	-	approx. 120 kgs	$40^{\circ} \mathrm{C}$	70/00413620

Dimensions

Type 709050/X1...

Note:

Screw tightening torque in the power section (width across flats 10 mm) max. 15 Nm
Tightening torque of the 75 A choke screw terminals: $4 \ldots .4 .5 \mathrm{Nm}$
Tightening torque of the green screw terminals in the control section: $0,5 \ldots 0.6 \mathrm{Nm}$

Connection diagram

Type 709050/X1...

	Connection for	screw connections in the power sec tion	Detail
\rightarrow	Protective earth	PE	PE-○ PE
	Functional equipotential bonding also see Operating Manual, Chapter 3.1 „Installation notes"	FB	FB-○ FB
	Voltage supply to power section	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~N}(\mathrm{~V}) \end{aligned}$	$\begin{gathered} \mathrm{L} 1 — \circ \mathrm{U} \\ \mathrm{~N}(\mathrm{~L} 2) — \mathrm{ON} \mathrm{M} \end{gathered}$
\circlearrowleft	Choke connection	$\begin{aligned} & 1 \mathrm{C} \\ & \mathrm{c} \end{aligned}$	$\sum_{0} 1 \mathrm{C}$
	Load connection	$\begin{aligned} & 1 \mathrm{D}+ \\ & \mathrm{D} \end{aligned}$	

	Connection for	terminal screw X102	Detail
	Current input (differential input)	$\begin{aligned} & 1- \\ & 2+ \end{aligned}$	ε_{02}^{01}
	Voltage input (referred to ground)	3 ground $4+$	$\underbrace{+\circ}_{+04}$
	External manual adjustment Potentiometer $5 \mathrm{k} \Omega$	3 Start (ground) 4 slider 5 end (+10V)	
	Firing pulse inhibit (inhibit input) I_{K} approx. 1 mA (break or make contact)	6 ground 7+	

	Actual value output $0 \ldots 10 \mathrm{~V}\left(\mathrm{U}^{2}, \mathrm{P}, \mathrm{I}^{2}\right)$ $I_{\text {max }}$ approx. 2 mA	$10+$ 6 ground	$+010$
	Resistance output 0 ... 5V (R) $I_{\text {max }}$ approx. 2 mA	$\begin{aligned} & 8+ \\ & 6 \text { ground } \end{aligned}$	$+\underbrace{+\boxed{~}} 08$
	Connection for	Screw terminal X103	Detail
	Load fault output with relay contact rating 230V AC/3A resistive load relay drops out at fault	1 make contact 2 break contact 3 common	
	Load fault output with optocoupler $\mathrm{Ic}_{\text {max }}=2 \mathrm{~mA}$ $\mathrm{U}_{\mathrm{CEO} \text { max }}=32 \mathrm{~V}$	3 collector 1 emitter	\ldots

Wiring for single-phase mode phase / N with type 709050/X1...

Wiring for single-phase mode phase / phase with type 709050/X1...

Dimensions

Type 709050/X2...

Note:

Tightening torque of the screws in the power section (Allen key width across flats 5 mm) 6... 8 Nm .
Tightening torque of the 100A choke screw terminals: 6 ... 8 Nm

EMC filter current	Length in mm	Width in mm	Height in mm	Fastening holes Spacings in mm		Tightening torque	Connection crosssection in mm^{2}
for the power section				A	B		
16A	255	60	125	25	240	$0.6 \ldots 0.8 \mathrm{Nm}$	0.25... 4
20A	289	70	140	50	295	1.5 ... 1.8 Nm	0.5... 10
32A	324	90	160	50	295	1.5 ... 1.8 Nm	0.5... 10
63A	380	117	190	65	330	$2 \ldots 2.3 \mathrm{Nm}$	0.5... 16
100A	445	150	220	100	385	6 ... 8 Nm	10... 50
for the control section							
1A	80	46	30	-	61		via tab connector $6.3 \times 0.8 \mathrm{~mm}$

Type 709050/X3... Note:

Tightening torque of the screws in the power section (Allen width across flats 5 mm) $6 . . .8 \mathrm{Nm}$.
Tightening torque of the screws in the power section (Allen width across flats 6 mm) $15 . . .20 \mathrm{Nm}$
Tightening torque of the 200A choke screw terminals: $15 . . .20 \mathrm{Nm}$
Tightening torque of the green screw terminals in the control section: $0.5 \ldots 0.6 \mathrm{Nm}$

Connection diagram for type 709050/X2... and 709050/X3...

	Connection for	screw connections in the power section	Detail
	Protective earth	PE	PE-O PE
	Functional equipotential bonding also see Operating Manual, Chapter 3.1 „Installation notes"	FB	FB- ${ }^{\text {FB }}$
	Voltage supply to power section	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~N}(\mathrm{~V}) \end{aligned}$	$\begin{gathered} L 1 — \circ U \\ N(L 2) — o N M M \end{gathered}$
\circlearrowleft	Choke connection	$\begin{aligned} & 1 \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\sum_{0}^{\circ} 10$
	Load connection	$\begin{aligned} & 1 \mathrm{D}- \\ & \mathrm{D}+ \end{aligned}$	

	Connection for	terminal screw X102	Detail
	Current input (differential input)	$\begin{aligned} & 1- \\ & 2+ \end{aligned}$	ε_{02}^{01}
	Voltage input (referred to ground)	3 ground 4+	$\underbrace{+\wp_{0}}_{+04}$
	External manual adjustment Potentiometer $5 \mathrm{k} \Omega$	3 Start (ground) 4 slider 5 end (+10V)	
	Firing pulse inhibit (inhibit input) I_{K} approx. 1 mA (break or make contact)	6 ground 7+	
\circlearrowleft	Actual value output $0 \ldots 10 \mathrm{~V}\left(\mathrm{U}^{2}, \mathrm{P}, \mathrm{I}^{2}\right)$ $I_{\text {max }}$ approx. 2 mA	$10+$ 6 ground	$\begin{gathered} +5010 \\ \times-6 \end{gathered}$
	Resistance output 0 ... 5V (R) $I_{\text {max }}$ approx. 2 mA	$\begin{aligned} & 8+ \\ & 6 \text { ground } \end{aligned}$	$+{ }_{+}^{+5} 8$

	Connection for	Screw terminal X103	Detail
	Load fault output with relay contact rating 230V AC/3A resistive load relay drops out at fault	1 make contact 2 break contact 3 common	
	Load fault output with optocoupler $\mathrm{Ic}_{\max }=2 \mathrm{~mA}$ $\mathrm{U}_{\text {CEO max }}=32 \mathrm{~V}$	3 collector 1 emitter	

Wiring for single-phase mode Phase / N with type 709050/X2... and 709050/X3...

Wiring for single-phase mode Phase / Phase with type 709050/X2 and 709050/X3...

Order details:

Standard accessories

1 Operating Manual

Accessories

Chokes

$\mathrm{L}=0.6 \mathrm{mH} / \mathrm{I}_{\text {Nom }}=75 \mathrm{~A}, 100 \mathrm{~A}$ or 200 A
EMC filter (for voltage supply to the power section)
$115 \mathrm{~V} / 250 \mathrm{~V} / 440 \mathrm{~V}$ AC $\mathrm{I}_{\text {Nom }}=16 \mathrm{~A}, 20 \mathrm{~A}, 32 \mathrm{~A}, 63 \mathrm{~A}$ or 100 A ,
EMC filter (for voltage supply to the control section)
$115 \mathrm{~V} / 250 \mathrm{~V}$ AC $\mathrm{I}_{\text {Nom }}=1 \mathrm{~A}$
Semiconductor fuse (2 fuses required)
extra fast 200A for $I_{\text {Nom }}=100 \mathrm{~A}$,
The $I^{2} t$ value of the semiconductor fuse must be smaller than $20000 A^{2} s$!
(only use for type 709050/X2... and 709050/X3...!)

